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1. Introduction

1.1. Significance of diagnostic problem

In the U.S. in 1994, there were approximately 182,000 new cases and 46,000
deaths due to breast cancer, making it second only to lung cancer as the cause of
cancer death among women [1]. Mammography is the modality of choice for early
detection of breast cancer and can significantly decrease the mortality for women
undergoing screening [2,3]. Evaluating mammograms remains a challenging task to
radiologists, however, as they consider many radiographic and non-radiographic
features in order to decide whether a lesion is benign or whether it should be
followed or biopsied. Although mammography is very sensitive, there are a large
number of false-positive biopsies. Of women with radiographically-suspicious,
nonpalpable lesions who are sent to biopsy, only 15 to 34% actually have a
malignancy by histologic diagnosis [4,5].

1.2. Potential of the proposed technique

This study seeks to improve the diagnosis and treatment of breast cancer by
reducing the cost and morbidity of unnecessary biopsies. Cost is a major obstacle to
widespread acceptance of mammographic screening [6]. It has been shown that
surgeon’s fees and biopsy costs account for over half the cost of detecting small
breast cancers in a screening population [7]. Preventing unnecessary biopsies is
therefore one of the most important ways to improve the efficacy of mammographic
screening. Many previous reports have discussed the need to reduce the number of
benign biopsies [8,9].

To improve early diagnosis, we propose an automated computer-aided
diagnosis (CADx) system for mammography. The system will perform automated
feature extraction from mammograms using artificial neural network (ANN) and
other image processing techniques, then predict the outcome of biopsy (benign vs.
malignant). The intent is to identify probably benign lesions for which biopsies may
be spared. This study will potentially provide an accurate, consistent aide for the
early diagnosis of breast cancer.

A successful mammography CADx system consists of two stages:
(1) automated extraction of various features from the mammogram, potentially by
different methods appropriate for each task, and (2) accurate “merging” of those
features by computer algorithms to produce the diagnosis. Automated feature
extraction can improve the accuracy, specificity, consistency, efficiency, and
accessibility of breast cancer diagnosis.
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1.3. Computer-aided diagnosis using artificial neural networks

In medical imaging, CADx systems provide radiologists with information
from computerized analysis of images or image features, thus helping radiologists
detect or diagnose diseases more accurately, easily, and consistently [10,11]. CADx
has been applied to such varied problems as interstitial disease [12,13], cardiomegaly
[14], pneumothorax [15], lung nodules [16-18], nuclear medicine lesions [19], and
pulmonary embolism [20]. In mammography specifically, there have been numerous
reports on computerized detection [21-27] or diagnosis [28-33] of breast cancer.
Although both are generally considered CADx systems, detection systems locate
suspicious lesions in an image, while diagnosis systems such as this study determine
whether those lesions are benign or malignant.

This study focuses on the use of artificial neural networks (ANNs) which are
computer models inspired by the structure and function of biological neural
networks, such as the cerebral cortex of the human brain. Most ANNSs are
characterized by multiple, simple computing elements or neurons that work in
parallel. The neurons interact globally through connections that have strengths or
weights, and together they can duplicate aspects of human intelligence while
incorporating the processing power of computers [34]. The classification rules are
not defined a priori. instead the network is trained by presenting it with medical
findings and final diagnoses from many patients. The network “learns” by adapting
its weights to improve its diagnosis for each patient, just as physicians become more
experienced with time. Once trained, the network can generalize to new patients it
has not seen before.

ANNSs are very useful in handling complex decision tasks such as those
involved in medical diagnoses, where multiple findings are subtly related in ways
which are often difficult to express in the form of diagnostic criteria. The networks
can capture such relationships between the input findings to generate robust outputs.
ANNS solve problems empirically without requiring any prior knowledge of
distribution functions or any type of statistical modeling, yet ANNSs are able to
duplicate solutions of statistical methods [35]. Finally, ANNs are always consistent,
for they are not prone to human fatigue or bias.

1.4. Technical Objectives

The technical objectives pertaining to the first budget period are aims 1a, 1b,
and 2a from the list of aims for the entire budget period shown below:
(1) Identify an optimal subset of features that would provide adequate diagnostic

performance.

la. Retrain the features-to-diagnosis ANN using sub-groups of features. The
goal is to maintain the sensitivity of the original network while keeping
specificity reasonably high.

Ib. Encode the multiple-value features into binary “sub-features”, then repeat
step 1a to reduce the number of sub-features. The sub-features will be
easier to extract by automated schemes.

p-6
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) Investigate conventional and ANN methods for extracting the optimal subset
of features directly from mammograms.
2a. Implement established techniques which have demonstrated promise for
extracting features belonging to our reduced feature set.
2b. Investigate several ANN techniques for feature extraction, focusing on
features which may be difficult to classify by conventional techniques in
step 2a. For both 2a and 2b, evaluate these techniques by comparing the
extracted features against radiologists’ findings.
(3) Evaluate the automated CAD system clinically.
3a. Implement the CAD system by feeding the best feature extraction
techniques from step 2 into the best features-to-diagnosis ANN from step
1, and compare the resulting diagnosis against the biopsy result.
3b. Evaluate the accuracy of the CAD system retrospectively by using patient
records from our computerized mammography database.

month 6 12 18 24 30 36
Figure 1. Time line for proposal project period.
In the following sections, we will report in detail on the progress in aim 1a.
As will be explained, aim 1b will not be pursued. The preliminary results of aim 2

will be presented at a national conference during the second budget period [36], and
discussion of those results will be reserved for the second annual report.
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2.  Body

In the proposal, we reported some preliminary results from an artificial neural
network (ANN) which predicted breast lesion malignancy based on mammographic
findings extracted by radiologists [37]. The mammographic findings in that study
were encoded using a lexicon which was at that time standard at our institution.
Since then our institute has adopted a nationally-standardized lexicon. We
investigated the use of this new lexicon to take advantage of its potential for general
applicability of the CADx system. This work was presented at a national conference
[38] and subsequently published in two parts in a peer-reviewed journal [39,40]. The
ANN was developed using 206 patients who underwent excisional biopsy and
pathologic diagnosis. The ANN was evaluated by receiver operating characteristic
(ROC) analysis and its performance was compared to that of expert
mammographers. That study was then extended by identifying an optimal subset of
input features to simplify the network. This work was presented at two national
conferences [41,42] and subsequently published in a peer-reviewed journal [43].

In the following sections, we will describe these studies in detail in the
following order: the data collection and encoding scheme (2.1), the ANN architecture
(2.2), the backpropagation algorithm used to train the ANN (2.3), the optimized
reduction in the number of features (2.4), and the remaining technical objectives (2.5).

2.1. Data preparation

To provide the examples for supervised training of the neural network, the
mammograms of 206 women with nonpalpable lesions were randomly selected for
prospective evaluation from studies completed at this institution from 1991 to 1992.
For all patients, needle localization and excisional biopsy were completed and
histologic results were available. Of the 206 lesions evaluated there were 99 masses
alone, 76 suspicious calcifications, and 11 combinations of masses and associated
microcalcifications. The remaining 20 lesions included various combinations of
architectural distortion, regions of asymmetric breast density, areas of focal
asymmetric density, and areas of asymmetric breast tissue. Patients ranged in age
from 24 to 86 years with an average age of 55 years. At biopsy, 133 (65%) of the
lesions were found to be benign while 73 (35%) were malignant.

The mammographic findings were encoded using the Breast Imaging
Reporting and Data System or BI-RADS, a standardized lexicon devised by the
American College of Radiology to improve upon the consistency of mammographic
reports [44,45]. Each set of films was reviewed prospectively by one of two
radiologists whose primary clinical responsibilities are the interpretation of
mammograms and the evaluation of breast lesions and who are familiar with the
definitions of the BI-RADS descriptors. The radiologist was provided with the
cranio-caudal and mediolateral-oblique views from both breasts, as well as any other
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Table 1. Coding of findings to network input values

Calc. Distribution Mass Margin Location
no calcifications 0 nomass O axillary tail O
iffise 0.2  well circumscribed 0.2 posterior 0.2
regional 0.4 microlobulated 0.4 middle 0.4
segmental 0.6 obscured 0.6 anterior 0.6
linear (.8 ill-defined 0.8 subareolar 0.8
clustered 1.0 spiculated 1.0 central 1.0
Calc. Number Mass Size Associated Findings
no calcifications 0 mm, rel. tomax % none O
<5 033 skin lesion Q.11
5t010 0.66 Mass Shape hematoma (.22
>10 1.0 nomass 0 post surgical scar  0.33
round 0.25 trabecular thickening 0.44
Calc. Description oval 0.5 nipple retraction  0.56
no calcifications 0 lobulated 0.75 skin retraction  0.67
milk of calcium-like 0.07 irregular 1.0 skin thickening 0.78
rim 0.14 architectural distortion .89
skin 0.21 Mass Density axillary adenopathy 1.0
vascular (.29 nomass O
spherical (.36 fat-containing 0.25 Special Cases
suture  0.43 low density 0.5 none 0
coarse (.50 isodense 0.75 intramam. lymph node 0.25
large rod-like  0.57 high density 1.0 asym. breast tissue 0.5
round 0.64 : focal asym. density  0.75
dystrophic .71 tubular density or 1.0
punctate .79 solitary dilated duct
indistinct  0.86
pleomorphic  0.93 Age
fine branching 1.0 yrs,rel. tomax %

available views and films from prior studies. The radiologist was blinded to the
biopsy result and reviewed the films prospectively.

The radiologist was asked to describe ten radiographic findings pertaining to
lesion morphology. The first three are descriptive features that apply to
microcalcifications and calcifications associated with masses: calcification
distribution, number and description. Another four features apply only to masses:
mass margin, mass shape, mass density, and mass size. Three features that can apply
to all lesions include lesion location, associated findings (e.g. axillary adenopathy),
and special cases (e.g. asymmetric breast tissue). The patient age was also recorded.
The radiologist also assigned an overall impression of malignancy on a scale from
one to five: one = benign, two = probably benign, three = indeterminate, four
= probably malignant, and five = malignant. This estimate of probability for
malignancy was used only to evaluate the radiologists’ performance.

For quantitative features, the neural network input was simply the numeric
value, such as mass size in millimeters normalized by the maximum mass size. In
comparison, qualitative features were recorded in a multiple-choice format.
Radiologists selected one of several possible descriptors for each feature, such as the
six choices for mass margin: no mass, well circumscribed, microlobulated, obscured,
indistinct, or spiculated. These feature descriptors were then coded into equally-
spaced numeric values from zero to one, as shown in Table 1 above. The ordering of
the descriptors for each feature was arrived at by discussion with experienced

p-9
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mammographers and review of reports discussing the malignant potential of various
BI-RADS descriptors [45,46].

2.2. Backpropagation neural network architecture

The ANN architecture we used were three-layer feed-forward
backpropagation networks. A typical network is illustrated in Figure 2 on the next
page. For this network, the input layer consists of eight input nodes (three features
are excluded to simplify the figure). The inputs are fully connected to the hidden
layer which in this case consists of 16 nodes. These hidden nodes are in turn
connected to the output layer, consisting of a single node representing diagnostic
outcome. The network’s output is compared to the desired or target output, which is
set to the actual pathologic diagnosis: 0 for benign and 1 for malignant.

For this features-to-diagnosis network, we use the subscript i for the input
layer, j for the hidden layer, and k for the output layer. The weight connecting input
feature F; and hidden node H; is W, and the weight connecting hidden node H jand
the output node or diagnosis D is Vjk . Since the network has only a single output,
the k subscripts are unnecessary and thus omitted.

input features weight fidden node

F; Wij Hj
y
mass margin
output
mass size diagnosis D
mass shape J
mass dersity benign
® Vs,
calc. distribution malignant
calc. number
calc. cscription
age
INPUT HIDDEN ouUTPUT
LAYER LAYER LAYER

Figure 2. Preliminary neural network architecture.

Each node in the hidden and output layers calculate the weighted sum of its
inputs from the previous layer, add a bias value, then pass the resulting sum through
a sigmoid thresholding function (shown below) to yield an output value between 0
and 1.
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1
1+e™

(1)

f{x}=

This process is illustrated in fig. 2 above by the “fan-in” of the darker lines (i.e.,
weights Wig) to the 6th hidden node. The bias is added and the sum passed through
the sigmoid function to produce the output value for that hidden node, H j, as shown
in Eq. 2 below.

N=8 M=16
H = f{ Y W.F + biasj} @ D= f{ Y VH + biasom} €)
i J

The outputs from the sixteen hidden nodes then become inputs to the last layer,
consisting of the single output node. As before, the weighted sum of these inputs is
formed, added by the single bias value biasoy, and passed through the sigmoid
function, as shown in Eq. 3 above. The resulting single output is the diagnosis D.
The diagnosis lies between 0 and 1, and may be compared with a threshold (between
0 and 1) during evaluation. If the output exceeds the threshold, a malignancy is
predicted, otherwise the outcome is predicted to be benign.

2.3. Backpropagation training algorithm

The “knowledge” of each ANN was contained in its weights, which were
initialized to small random numbers (uniformly distributed between 0.3 and -0.3).
The network “learned” by using the generalized delta rule, whereby it adapts those
weights over many presentations of training cases or iterations, using a gradient
descent technique to minimize the mean squared error between the network and
target outputs.

Using the round robin or “leave one out” technique, the network was trained
on all but one of the examples for a fixed number of iterations, then tested on the one
excluded example [33]. The excluded example was replaced, the network weights
were reinitialized, and the training was repeated by excluding a different example
until every example had been excluded once.

For each training case consisting of the input/output pair p, the network
output D was compared against the target diagnosis Dy, (set to one if the biopsy
reveals malignancy and zero if benign) to form the error Derry:

Derr, =D(1-D)D, -D) 4)

Using this error term, we calculated additive correction or “delta” factors for the
output node’s weights and bias at iteration n:

n n-1 . n
AVi=n-H;-Derr, + a-AV] Abias

out

= 1-Derr, ‘ 6)

The delta factor for a weight depended on both the error and the input which caused
that error. Bothn and o were proportionality constants. The learning rate n
controlled the rate of convergence, while the momentum o enhanced the speed and

p-11
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stability of convergence by incorporating part of the old delta factor into the current
one. The old weights and bias were added by their delta factors to yield the current
weights and bias:

an _ V;,_1 + AV;‘ biaszm = bi.'flsgu_t1 + Abiaszut 6

Since there were no target values to compare against the hidden nodes’
values, the output error Derry, was backpropagated to determine each hidden node’s
error Herrjy:

Herr; , =H;(1-H,)V,Derr, @

As before, delta factors were calculated for the hidden nodes’ weights and biases:
AW} = nF, Herr,; , + o AW} ™ Abias] = nHerr, )

After each iteration, consisting of one complete presentation of all training cases, the
training and testing MSE were calculated. The testing MSE over the L=260 cases
was:

MSE" = %E:Z(Dp -p)’ - ©)

Also after each iteration, for the L testing outputs, the sensitivity and specificity over
a range of decision thresholds were expressed as a receiver operating characteristic
(ROC) curve. Performance of both the networks and radiologists were measured and
compared by the ROC area index, Az, using LABROC4 and CLABROC software
(provided by Dr. Charles Metz, University of Chicago, Chicago, IL) [47,48]. Large
area indices close to 1 corresponded to high specificity and sensitivity.

The optimal number of iterations was found by halting training when the
testing MSE no longer decreased, indicating when the network had become
overtrained, thus losing its ability to generalize to new cases. Since the final measure
of merit was Az, the effect of halting training when the Az no longer increased was
also investigated. Minimizing the testing error almost always yielded the same
stopping criterion as maximizing ROC area. The neural networks required 200-1000
iterations to minimize error. Maximizing Az instead sometimes increased or
decreased training by a few hundred iterations, but never improved Az by more than
30% of a standard deviation.

Similarly, the number of hidden nodes were varied from 5 to 25 to optimize
the Az. More hidden nodes would permit the network to form more complex
decision regions and become a better classifier. Too many hidden nodes, however,
would result in too many weights than can be reliably estimated from the limited
number of examples [49]. The network was robust to variations in the number
(between 5 and 25) of hidden nodes. Although it performed best with fifteen and
worst with five hidden nodes, the difference in Az was only 1%. This trend was
typical of all networks in this study. Therefore unless otherwise noted, all of the
following results were reported for networks with fifteen hidden nodes.

p- 12
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All neural network software was custom-written by the principal investigator
in the C language and executed on SPARC 20 workstations (Sun Microsystems, Inc.,
Mountain View, CA). For each run consisting of a new combination of inputs and
hidden nodes, the round robin process of training and testing required
approximately 4 hours without parallelization. :

2.4. Optimized reduction of input features

Given all ten mammographic features and patient age, the best 11-feature
network performed with Az of 0.84 + 0.03, which was not significantly different from
the expert radiologists” Az of 0.85 + 0.03 (2-tailed p-value = 0.54). This was an
important result since the network did not have access to all the information that
radiologists did, such as mammograms from other views and previous studies,
clinical findings, and history findings other than age. In a separate paper, we
demonstrated further improvements by including history findings in the ANN
inputs, raising Az to 0.89 + 0.02 which was still not significantly better than the
radiologists (p=0.29) [39].

We next sought to identify the minimal subset of features which would still
yield accurate diagnostic performance. There were several motivating reasons for
doing so. Fewer features would reduce the data-entry effort of radiologists, which in
turn makes it more likely that they would incorporate the ANN into their standard
reading process. Previous studies have shown that community radiologists and
technologists may extract features as reliably as expert mammographers, but lack the
latter’s experience in merging those features into a diagnosis [50,51]. Simplifying the
number of inputs may enable the use of community radiologists or technologists for
feature extraction, thus improving accessibility of expert diagnosis. Fewer inputs
should also permit reducing the number of hidden nodes and hence the number of
ANN weights, thus ameliorating the problem of overconditioning due to insufficient
training cases [49]. Finally, a simplified computer model may shed some light on the
complex cognitive processes underlying radiological diagnosis.

In general, input features may be eliminated one or a few at a time, then the
algorithm retrained and retested to determine the significance of the excluded
feature(s). Since many features are correlated, however, this process becomes more
complicated. In other words, groups of features may be greater or less than the sum
of their parts. Previous authors reduced the number of inputs by using only those
inputs whose mean value differed greatly for benign vs. malignant cases [33]. Others
employed statistical techniques such as linear discriminant analysis to identify an
optimal subset of inputs [52]. To fulfill the objectives of this study, we employed a
new technique using nonlinear ANNSs to identify the optimized subset of features.

Since each subset of features required developing a new ANN (varying the
number of hidden nodes and then performing a round robin for each), it was
impractical to investigate all possible combinations. Instead, the features were
ordered by their importance, then eliminated one by one until network performance
was significantly degraded.

p-13
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To rank the features by importance, one feature was excluded and a neural
network was retrained using all the other features. As before, network performance
was measured by Az. The process was then repeated with a different feature until all
features had been excluded once. The assumption was that the exclusion of an
important feature would degrade performance more than the exclusion of an
unimportant feature. In order from most to least important, the features were:

(1) age, (2) mass margin, (3) calcification description, (4) mass density, (5) associated
findings, (6) calcification distribution, (7) lesion location, (8) mass size,

(9) calcification number, (10) mass shape, and (11) special cases. Excluding the most
important feature (age) reduced Az from 0.84 to 0.80, while excluding the least
important feature (special cases) did not affect Az at all.

Figure 3. Reducing number of features

0.90 T T T T T T T T T T T

0.85

< 0.80

0.75

0.70"""""
1110 9 8 7 6 5 4 3 2 1

# input features

As ANN features are reduced from 11

to 2, Az is comparable to radiologists
(dashed line).

Table 2. Performance of ANNSs as
the number of features are
reduced

#features Az o p

11 0.84 0.03 0.54
6 0.86 0.03 043
2 0.85 0.03 0.83

radiologists 0.85 0.03 -

For each network, the Az and
standard deviations are shown,
along with the p-value for the
difference compared to
radiologists. The 6-feature network
is the best, but all ANNs showed
no difference vs. radiologists.

Once ranked, the input features were discarded in order from least to most
important in a manner analogous to backwards discrimination analysis, reducing the
number of features to ten, nine, eight, and so on. Each simplified network was
retrained and re-tested with the round robin process as before, and its performance
was compared to that of the expert radiologists. The performance of these simplified
networks are plotted in Figure 3 and summarized in Table 2.
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As the number of
features was reduced from
eleven to only two, the Az
barely fluctuated with
changes of much less than
one standard deviation.
Even in the extreme case, the
two-feature network still
performed well with Az of
0.85 i'0.03, Whlch was not -- === -- radiologists i
statistically significantly 0.2- Az=0.85 -
different compared to the ] i
radiologists (p = 0.83). The . -
six-feature network gmerged 0.0 02 04 06 08 10
as the best compromise Fal itive fracti
between minimizing features alse positive fraction
and maximizing
performance. Its ROC area
of 0.86 £ 0.03 was not _
significantly different than that of the expert radiologists with p = 0.34. The ROC
curve of the six-feature network is plotted in Figure 4 against that of the radiologists.

0.4 —— ANN-6 -
: Az=0.86 -

True positive fraction

Fig.4. ROC curves of 6-feature ANN vs. radiologists.

Histograms of the neural network outputs and radiologist impressions for all
cases are plotted as Figures 5 and 6, respectively. Note the gaussian shape of the
radiologist impressions where most cases were indeterminate, compared to the
bimodal outputs of the computer models where most cases could be definitively
diagnosed as positive or negative.
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In addition to high ROC area, it is also important to have good specificity at
the very high sensitivities required in clinical practice. We considered the particular
operating point on each ROC curve where sensitivity was 95%, corresponding to
missing 5% of cancers of the malignancies identified by radiologists. At 95%
sensitivity, the specificity of the neural network (56%) was statistically significantly
greater than the specificity of the radiologists alone (30%) with two-tail p-value <
0.01. In terms of actual patients in this study, at 95% sensitivity the ANN would
have missed 3 out of 73 malignancies but prevented 74 of 133 benign biopsies. At the
portion of the ROC curves where most mammographers are trained to practice (i.e.
high sensitivity and low specificity) the ANN maintained a very high relative
sensitivity while significantly improving the mammographer’s specificity.

This work demonstrated an empirical technique for identifying an optimal
subset of input features to a complex, nonlinear classification system. There was
minimal change in network performance as the number of inputs was pared from
eleven down to six, which represented an optimal compromise between minimizing
the number of input features and maximizing performance. The ANN's optimized
subset of features correlated well with those identified by expert radiologists as being
among the most important, although no clinician would be willing to make a
diagnosis based on so few findings. It was therefore all the more remarkable that the
neural network outperformed the specificity of the expert mammographers who
extracted the input features in the first place and who also had access to other
information such as previous films and the patients’ clinical history.

2.5 Other technical objectives

The preceding sections pertained to specific aim 1a listed in the proposal's
technical objectives. In specific aim 1b, we originally proposed to separate the
features identified in aim 1a into binary sub-features, thus facilitating their
automated extraction. Preliminary work during this first year suggested several
reasons not to focus so specifically on individual sub-features. First, analysis of the
distribution of the various sub-features revealed that some sub-features were present
in very few patients, which would make teach-by-example development of ANNs
difficult. Second, the original proposal assumed that each feature was separable into
discrete, non-overlapping sub-features. Our studies demonstrated considerable
inter-observer variation in categorizing each feature into sub-features [40]. Finally,
for some features, the sub-features may be considered as approximate gradations of
the same phenomenon. For example, the mass margin ranges from circumscribed
which is very “smooth” to spiculated which is very “rough.” For these reasons, we
deemed it unnecessary to separate these inter-related, overlapping sub-features for
ANN development.

Work on specific aim 2a was commenced in accordance with the time line
shown in the original proposal. The initial results will be presented at a national
conference during the second budget period [36], so discussion of that work will be
reserved for the second annual report.
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3. Conclusions

This goal of this proposal is to develop a computer-aided diagnosis system to
automatically extract radiographic features from the mammogram, then use an
artificial neural network (ANN) to merge those features to predict breast lesion
malignancy. During the first budget period, we successfully developed an ANN that
merges radiologist-extracted features to predict malignancy. By adopting the
nationally-standardized BI-RADS lexicon for encoding features, this ANN has the
potential to be widely applicable. Finally, we also developed an empirical technique
for identifying an optimal subset of input features to a complex, nonlinear
classification system. This technique can be applied to any problem where one
wishes to optimally simplify a large number of input features for ANN development.

At the conclusion of the first budget period, we have accomplished the stated
goals of the proposal for that time period, or indicated our reasons for not doing so.
In the next year, we will continue in accordance with the proposal time line.
Specifically, we will conclude work on aim 2a concerning conventional techniques
for automated feature extraction. We will at the same time commence work on aim
2b, using ANN s for feature extraction. If successful, the features extracted by
conventional or ANN methods will eventually be fed to the features-to-diagnosis
network developed during the first year. Together, the system will provide
automated, accurate predictions of breast lesion malignancy.
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